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This report was prepared as an account of work sponsored by an agency of the United States
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responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favering by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
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I. INTRODUCTION

The distortion functions introduced by Collins' are important functions for a
lattice. Just as the betatron functions &, and [, that specify the elliptic evelopes of
betatron oscillations in both transverse planes, the distortion functions specify the
deviations from these ellipses. Knowing the distortion functions, the nonlinear smears
as well as betatron tunes dependence on amplitudes can be computed. Inversely, if
the distortion functions can be controlled in the design of the lattice or placement of

higher multipoles, the nonlinearity of the lattice can be very much reduced.

Take the contribution of the sexiupoles as an example, each pair of distortion
functions (B,, A,) can be computed using the following three criteria. (1) In the
region between two sextupoles, (B, A,) rotates like a vector by the angle a. (2) On
passing a ‘thin’ sextupole, B is continuous while 4 jumps by an amount m, which
may be s/4 or §/4. (3) (Ba,An) have to close after one revolution of the ring. In

the above, the sextupole strengths s and 3 are defined as

~ Eﬁ 1/2 -(33_}33)”2

where

Byt
=13 1.2
) EIUI[MBP)] ) (1.2)

with BJz the local gradient of sextupole field, £ its length, and (Bp) the magnetic
rigidity of the particle. The angle & slands for either, 1., 39,, 24, + 1, or 295, — ..
However, this derivation includes an a prioriassumption of the closure (or periodicity)

for the distortion functions.

An alternative derivation starts from the Hamiltonian. We solve for the amplitudes
of betatron oscillations in both transverse planes, pick oul the functions that are
periodic and amplitude independent and called them the distortion functions. This
approach was performed in Refs. 2, 3, 4, and 5. There, we expanded the Hamiltonian
into harmonics and then resummed the harmonics at the end. The expansion into
harmonics is only necessary if we wish to identify the harmful harmonics, which are
usually only a few, and avoid them by suitable arrangement of the higher multipoles.
If we are just interested in the derivation of the betatron amplitudes in terms of the

distortion functions, the expansion and resummation are in fact unnecessary. The



derivation will become simpler and more elegant. Such approach has already been

used in the analytic computation of the horizontal smear.®

II. DERVATION

We demonstrate here the derivation including only normal sextupoles as nonlinear

elements. The Hamiltonian is

Bn‘
Hy [P'~’ + K X% ty P2 + K, Y+ 6(B; ﬁ)(X3 ~3XY?) (2.1)
p

where P, and P, are the canonical momenta conjugate to the horizontal and vertical
displacements X and Y, K.(s) and K,(s) are proportional to the restoring forces due
to the ring’s curvature and the field gradients of the quadrupoles. In the Floquet

space, this Hamiltonian becomes

R 1'2 2
H? 1]
25, (Bpf” ) 23, (ﬂpy ,8)

s |(5) - 3(6,3"9)fy} (22)

where R is the average radius of the ring, # defined as path length along designed orbit

RBH

divided by R has been chosen as the independent variable, and 3y is some arbitrary

reference value for the betatron functions.

This Hamiltonian is now solved exactly to zero order in sextupole strength by
canonical transformation to the action-angle variables I, a, and I,, a,. The gener-

aling function

G2(at7pma ayapya Z ﬁﬂpu COt[ ( ) + au] (23)

U= u”‘.‘,y

is used to obtain the transformation (u = z or y)
u = (21.00)Y% cos[Q,(0) + a.] ,

.BOPU - —(2]1160)1/2 SIH{Qu(a) + au] H

where Q,(8) = ¥.,(8) — 1,6 and Byp, = du/dy,. After the transformation, the new

Hamiltonian becomes

(2.4)

H3 - sz_-,; + Vy]y —+ AH;} y (25)
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where v, and 1, are the unperturbed horizontal and vertical betatron tunes and the
sextupole contribution is included in
RB!
AH, = (21163)3/2ﬂ(§;j[m5 3(Qs + az) + 3cos(Q + a)]
n
(213,93)1!2(211,@)8}(25;) [2cos(Q; + a;)
+ cos(2Qy + @2 + 2ay + a;) + cos(2Q, — Q. + 2a, — a,)] (2.6)

The equations of motion for 61, and 67, the deviations due to sextupoles, are:

d6l,  OAH o2 RBI .
—_— = — e = Mz = T i Om - x
7 ba. (21.5;) S(Bp)[sm 3(Q. + a;) + sin(G )l
RB"
—(21.8)Y%(21,8,) — £ [2sin(Q, — a,
+8in(2Q, + @ + 2a, + a,) — sin(2Q, — Q. + 2a, — a,)] (2.7)
dél, dAH RB"
= - = —(2LL4,)(21,8,) %
X [sin(2Qy + Q« + 2a, + e,) + sin(2Q, — Q. + 2a, — a.)] (2.8)

We need to solve Eqs. (2.7) and (2.8) up to first order in sextupole strength. For this,

we only need the zero-order dependences of @, and a, on #, which are simply

a, = v 8+ g, , (2.9)
ay = v+ ¢, ,

where ¢, and p, are initial betatron phases. Now, Eqs. (2.7} and (2.8) can be
integrated easily. For simplicity, let us cousider only the first term in the squared

brackets of Eq. (2.7). Noting that @, is periodic in 8, the integration gives

Bt 2m RB" cos(O-+q. —
§1,(0) = —f d0'(21,3, )7 Dy os(Qataazmrs) (2.10)
8 8(Bp) 2sin Ty,

Since the sextupoles are assumed to be ‘thin’, in terms of the sextupole strengths
defined in Eq. (1.1), we can rewrite Eq. (2.10) as

EA,(8) = —A2Y E cos(Way + o~V (2.11)

4 2 sin T, ’



where the summation over k is over each sextupole around the ring located at the
‘modified’ phase advance ¥, which is related to the usual periodic Floquet phase

advance ¥z by
¢mk if gk 2 0
Vo = (2.12)
¢mk+27r 1f6k<6,

and
Ao=\2LBe, A, =205, (2.13)

are the betatron amplitudes in the horizontal and vertical plane. The instantancous

horizontal betatron phase al position § is

$=(0) = v.(0) + @2 . | (2.14)

With this the disortion of the amplitude becomes

§A,(8) = AZ[Assin ¢, — By cos ¢, , (2.15)
e e a(0) - )
= N R COS W T Vel ) - Ty

Bi(9) = Zk: 4 25 Ty, ’ (2.16)
e Sk siniyy, -i?,!;m(ﬂ)—fru{]

Ai(8) = ; p 3 sin 7w, : (2.17)

Here, B1(f) and A,(f) are periodic in § and are amplitude independent. They are
Just one set of distortion functions. It is easy to verify that all the three criteria listed
in Sec. I are satisfied. In the same way, all the other four sets of distortion functions
can be derived easily. For example, the distortion functions corresponding to the sum

and difference resonances are

5k cos[thl, —a(0)—mu.
- g - E _—————— N
B-(6) 4 2sin wry ’ (2.18)
Sesin[yl — vy (0) - Ty
A = = _— .
+(9) Zk: 4 2sin Ty ! (2.19)

where vy = 2v, * v, and ¥, = 2¢] L+ ¥, with 1, defined similar to Eq. (2.12). If
we wish, we could remove the prime on ¢ and write the argument of the cosine of
Eq. (2.18) or the sine of Eq. {2.19) and rewrite it instead as

2[thye — Yy (0)] £ [k — ()] — mos . (2.20)

The way that 1t was written in Refs. 2, 3, and 4 is incorrect.
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